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Abstract—This paper considers the basic thermal design problem of cooling or heating an object using the
minimum amount of working fluid. It is shown analytically that if the duration of the cooling or heating
process is fixed, then there exists a .unique operating regime (flowrate-time function) which insures the
minimum consumption of working fluid. The optimum flowrate is proportional to (U/C,)! 2, where U is the
overall heat transfer coefficient and C,, is the specific heat of the working fluid ; the optimum flowrate changes
with time as (U/C,)!? varies with the temperature of the system. Numerical examples of cooldown and
energy storage processes show that the implementation of this optimum operating regime can lead to
significant savings in working fluid.

Subscripts
min,
opt,

o, ¢,

NOMENCLATURE

heat transfer area;

specific heat of object;

value of C at Ty;

specific heat of working fluid;

constant of integration;

integrand ;

integrals;

total mass of coolant or hot fluid;
flowrate ;

mass of object;

number of heat transfer units based on
Ugs

number of heat transfer units based on U ;
exponent in specific heat function C(T);
exponent in heat transfer coefficient
function U(T);

heat transfer rate;

time;

cooldown time;

absolute temperature;

temperature of working fluid, inside the
object;

high end-temperature of process;

low end-temperature of process;

initial temperature of working fluid;
heat transfer coefficient, U(T);
temperature-averaged  heat
coefficient ;

absolute temperature ratio, T/T.

transfer

minimum ;

optimum;

optimum and constant flowrate regimes,
respectively (used to characterize m
and m).

* Visiting from the University of Stuttgart, F.R.G.

INTRODUCTION

AN INCREASING number of novel installations for
energy processing and conversion rely on the classical
process of batch cooling or heating. For example, in
the field of solar energy engineering, we find that the
energy drawn from solar collectors can be temporarily
stored by batch heating water tanks and underground
porous rock beds [1]. Electric power companies are
evaluating the possibility of storing thermal energy in
large tanks of water or oil during slack periods, to ease
the strain during heavy demand periods [2]. Further-
more, the emerging technology of large-scale super-
conducting devices relies heavily on the cooldown
(batch cooling) of immense structures from room
temperature (300K) to the normal boiling point of
helium (4.2 K); a noteworthy example in this group is
the proposed construction of football stadium size
superconducting structures for magnetic energy
storage [3].

In all such applications, the expensive commodity is
the fluid which must be pumped through the object
(structure) of interest. The fluid heated in the boiler of a
power plant inherits the price of the fuel which is
burned. Likewise, the fluid heated in a solar collector is
in limited supply, considering the high initial cost of
installed solar collector area. And, finally, the cryogen
(liquid helium) circulated through a superconducting
structure is notoriously expensive, given the extreme
ratio of absolute temperatures (300 K/4.2 K) which
must be overcome by the liquefaction process [4].

In this paper we address the fundamental question
of how to cool (or heat) a system to a desired
temperature, by using the minimum quantity of pre-
cious fluid (cooling or heating agent). For clarity, we
focus in detail on the cooldown process. The energy
storage process is found to be analytically identical to
the cooldown process and, for this reason, it is
discussed only briefly at the end of the paper.
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Fi1. 1. Schematic of batch cooling system and temperature
history during cooldown.

THE COOLDOWN PROCESS

The basic features of the model employed in our
analysis are illustrated in Fig. 1. In the top drawing we
show the coolant supply, which is at a temperature T,
Next to it, we show the object (porous structure or
pool of liquid) which must be cooled from an initial
temperature Ty down to a final temperature T,.
Assuming that the coolant floods the object uniformly,
we model the object’s temperature as a function of time
only, T(¢). This modeling feature is particularly good
in the case of porous superconducting structures
in which, in addition to the multidirectional channels
available for the dispersion of coolant, the structure
itself contains a substantial amount of high con-
ductivity copper [3]. In the case of liquid pools for
energy storage, the uniform T assumption means that
the liquid is well-mixed (by free convection or other
mechanisms).

In our model, the mass of the system is M and its
specific heat is C. The total contact area available for
object-coolant heat transfer is 4. The instantaneous
heat transfer rate is proportional to object—coolant
temperature difference

Q=UAT - T,) (1)

where, in general, the overall heat transfer coefficient U
may be a function of temperature. Inside the object, the
coolant is modeled as well-mixed, at a temperature
which varies with time, T,(t). A schematic of the
object and coolant temperature history is presented in
the lower half of Fig. 1.

The link between the coolant supply T, and the
object T(t) is provided by the coolant stream of
flowrate m and heat capacity C,,. The flowrate n can
vary with time, such that at the end of the cooldown
process the overall coolant requirement
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m= f‘mmd[ (2)

0

is minimum. If the coolant flowrate is time-
independent, nm,, and if the heat transfer coefficient is
independent of temperature, Uy, it is easy to show that

T(t) — T, UgA ¢
T lmep| - | (3)
Ty — To MC 1+ NTU,

where NTU, = UyA/(m.C,). For the cooldown time ¢,
associated with the temperature drop T, — T, we

obtain
i 1 Ty —T
t, = MC + n 22
Ugd mC, T, — T,
hence, the overall coolant requirement is
MC /m C Ty—T
m = hﬂ) mn R0 (5
C, \Up4 T, — T,

Equation (5) shows that the coolant requirement m
decreases steadily if the flowrate m_ decreases: in the
limit m, — 0, the coolant mass m reaches the asymp-
totic minimum value

MC
mmin =45
C

P

TH— TO

n . 6
T. T, (6)

Although desirable from a coolant-conservation per-
spective, the process which consumes only m,; is not
practical because, as indicated in equation (4), it would
require an infinitely long time. Real cooldown and
energy storage processes face . = constant as a
constraint. This constraint is obvious in the case of
energy storage units for solar and peak-shaving appli-
cations, where ¢_ is measured between precise hours of
the day.

THE OPTIMUM FLOWRATE SUBJECT TO THE
FIXED-TIME CONSTRAINT
In the general case where the flowrate n1is a function
of time and the overall heat transfer coefficient U is a
function of temperature, we can write

UA(T ~ T,) = mC(T, — To). (7
Eliminating T, between equation (7) and the first law
of thermodynamics applied to the object,

MCT = — UA(T — Ty (8)
yields an expression for the instantaneous flowrate
C
M o T
Mm=— %2 9)
MC
To——T-T
UA

The total coolant mass requirement m is obtained by
integrating equation (9) over the known cooldown
interval t_. This result may be written as a temperature
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integral between the corresponding temperature limits
Tyand Ty,

C
- M—dT
- Lw_.(’;L__,,... 10)
m= ; MC . (
HTe——T-T
U4

The optimum flowrate function #(t) which mini-
mizes m is found indirectly, by first determining T(t)
appearing in equation (9). According to the calculus of
variations [5], integral (10) is minimized if its in-
tegrand, named F, satisfies the following Euler equa-
tion for an extremal,

d oF oF

dT NEE o
\dr
Note that F(dt/dT, T), where T is the independent

variable and the optimum function #T) is to be
determined. Solving equation (11) we obtain

U4 T,-T
P MC 1+ (C*UA/C ) ?

where the constant of integration C* has the dimen-
sion s/kg. The value of constant C* is determined by
integrating equation {12} fromt = (T = Ty)tot =
t{T = Ty), where U is a known function of tempera-
ture. Finally, inserting equation (12) into equation (9)
we obtain

= 0. (11

(12)

Mop, = (UA/C,C*)' 2, (13)

This is a compact result of interesting physical
significance. Bearing in mind that U varies as the
average temperature (T, T,,,) decreases, we learn that
during relatively poor heat transfer conditions (low U)
the mass flowrate should be decreased: this decrease is
necessary in order to avoid the decrease in T, and the
corresponding drop in heat exchanger effectiveness. If
during the same cooldown process the specific heat of
coolant increases, then m must again decrease in order
to avoid a further drop in heat exchanger effectiveness.
Note also that m,(r) is not directly a function of the
object’s temperature 7. However, i, dependson T
through U and C,.

COOLANT REQUIREMENTS FOR OPTIMUM
VERSUS CONSTANT FLOWRATES

The savings in coolant mass m associated with
employing the optimum flowrate history (13) instead
of a constant rate m,_ are calculated as the mass ratio
my/m.. In the following analysis, subscripts o and ¢
refer to the optimum and constant flowrate regimes,
respectively.

Combining equations (12) and (10) we obtain

MCdT

T, c 172
[ (5 et
Ty C*UA C(T,—T)

(14)
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The other mass requirement, m,, is obtained by
eliminating T between equations (9) and (10)

T m.C, MCdT
m, = 1+ .
Ty UA JC(T, - T)
The unknown constant C* appearing in equation (14}
is determined from the condition of equal cooldown

times
T dT m,
o To, m

" opt (]

(15)

{16)

where the LHS corresponds to the optimum flowrate
regime and the RHS to the constant flowrate regime.
Substituting equations (12) and (15) for Tﬂp( and m_in
equation (16) leads to the integral condition

" ey, MCdr_ [ MCde
Ty ’ mtcp(l - T)

1-1
where 7 is the absolute temperature ratioc T/T,. The
integrals appearing in equation (17) have been eva-
luated numerically, assuming that the object’s heat
capacity C and the heat transfer coefficient U vary with
the absolute temperature as

C = Cyt?

(17

Tn

{18)
and
U= Uyt (19)

Finally, equation (17) yields

C*l 2 -

20
I, mC, 20

with the notation

™ P T (P22)
dt, I, = dz.
5 T—1 . T—1

(21,22)

Based on this result, the coolant requirements (14,
15) can be expressed as

I, =

C 1.C, 13
m = °<1,+m—°—l’-i> (23)
C, UygAd I,
and
1. C
m, = <o (11 + 2te 13> (24)
C, UyA
where I; is the integral
T P
I, = f dr. (25)
L T 1

The coolant mass ratio is obtained by dividing equa-
tion (23) and (24),

2
_’f*_q:NTUo*‘Uz/Ii} (26)
NTU, + I/1,

my
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where NTU , is the number of heat transfer units based
on m_and Uy,

UyA
m,C,

c™p

NTU, = (27)
It is easy to verify that if U is constant (i.e., g = 0), the
mass ratio equals unity, because integrals I, and /I,
reduce to I,. In general, however, the exponents p and q
are finite and m /m_ must be evaluated numerically.
The results of this effort are presented in the next
section.

RESULTS AND DISCUSSION

As an application of the optimum cooldown regime
prescribed by equation (13), we considered the cooling
of a large-scale superconducting structure. This pro-
cess is characterized by the following parameters: T,
= 4.2 K, the boiling point of helium; T, = 45K ; Ty
= 80K, provided by liquid nitrogen precooling; p =
2.85, derived from heat capacity data of Al, Fe and Cu
below 80K, as a good approximation [6]. The re-
lationship between U and T depends on the heat
transfer mechanism, hence, it varies from one appli-
cation to another. For this reason, we produced
general information by varying exponent g from 0.1
to 10.

Figure 2 shows the coolant mass ratio for three
discrete values of NT U . As g increases, the mass ratio
m,/m_ goes through a minimum located in the vicinity
of g = 1. At first, the right side (rising) part of the curve
appears inexplicable: increasing g means a stronger
temperature dependence of U, hence, the savings
associated with using m,,, should be enhanced. The
reason for the rising part of the curve is that it is drawn
for NTU, = constant, where NTU isbasedon U, =
U(T,). Therefore, as g increases and as U , is held fixed,
the effective (average) U available for object—coolant
heat transfer during cooldown increases significantly.

10
NTU,=10.0
NTU,=1.0
099 NTU,=01
O
£
(o]
£ 098
097}
or 10 10.0
q

FiG. 2. Coolant mass ratio m,/m, vs heat transfer coefficient
exponent g, for different values of NTU,,.
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FiG. 3. Coolant mass ratio m,/m_ vs heat transfer coefficient
:xponent g, for different values of the mean number of heat

transfer units NTU .

In order to evaluate the (m,/m_) — q dependence for
a cooldown process where the effective thermal contact
is fixed, we defined the mean heat transfer coefficient

! fﬂ U(r)dz

TH = TL g

U= (28)

and held NTU = UA/(m.C,) constant as we varied q.
The results are shown in Fig. 3. The mass ratio m,/m,
drops off dramatically above a certain, critical, value of
exponent ¢. From an engineering standpoint, we see
stronger incentives for using the optimum flowrate
history (13) in cases in which g is large and/or the
average NTU is small. This conclusion is in agreement
with the qualitative discussion which followed equa-
tion (13).

The effect of heat capacity exponent p on the mass
ratio is illustrated in Fig. 4. This graph corresponds to
one value of NTU, and shows the same dramatic drop
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F1G. 4. Coolant mass ratio m,/m_ vs heat transfer coefficient
exponent g, showing the effect of specific heat exponent p.
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F1G. 5. Coolant mass ratio m,/m_ vs heat transfer coefficient
exponent g, showing the effect of end temperatures T, T, Ty
(numbers on the figure are in corresponding order).

in my/m_ as q increases. The abruptness of the drop is
enhanced as exponent p increases.
The effect of varying 7, and 7, is presented in Fig. 5,

for the special case p = 0 and NTU = 1. The mass
ratio drops steadily as exponent g increases. Changes
in both 1 and 1, lead to measurable changes in the
coolant savings associated with using ri,,,. For exa-
mple, the largest savings are recorded as both 1, and 7
increase. In connection with the economic cooldown
of a large superconducting structure, the optimum
flowrate is recommended especially when 4.2 K helium
gasis used throughout the cooldown process (from T’y
= 300K to T\), without liquid nitrogen precooling.
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F1G. 6. Schematic of batch heating system and temperature
history during energy storage process.
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Fi1G. 7. Hot fluid mass ratio m_/m_ vs heat transfer coefficient
exponent g, showing the effect of end temperatures T, Ty, T
(numbers on the figure are in corresponding order).

THE HEATING PROCESS

The minimization of overall heating fluid con-
sumption can be pursued in the same manner in which
we analyzed the cooldown process. Figure 6 shows the
basic model which applies to the heating process. Hot
fluid of temperature T, heats the object from the initial
(low) temperature T to the final (high) temperature
Ty. It can be shown that the equations describing the
relationship between flowrate history, total hot fluid
requirement and temperature history are identical to
the equations developed for the cooldown process. The
only difference occurs in the temperature limits of
integration.

In the interest of brevity, we omit the analysis and
show only a set of representative results. Figure 7
reports the changes in the mass ratio m/m_ as the heat

transfer coefficient g increases (NTU and p are held
constant). The behavior of m /m_ is qualitatively the
same asin Fig. 5 for the cooldown process. Comparing
Figs. 7 and 5, we learn that for a given g the heating
fluid mass ratio (Fig. 7)is greater than the cooling mass
ratio (Fig. 5). This means that the optimum flowrate
history (13) is less effective as a fluid-saving method
during heating processes, relative to its application to
cooldown processes. Numerically, the difference is due
to the fact that heating processes occur above room
temperature, therefore, they involve smaller absolute
temperature ratios (t) than the cryogenic cooldown
example illustrated in the preceding section.

CONCLUDING REMARKS

In this paper we considered the basic thermal design
question of cooling/heating a thermal mass while using
the minimum amount of working fluid. We showed
that when the time interval alloted to the process is
fixed, there exists a unique regime of operation which
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insures the largest savings in working fluid. We
discussed quantitatively the nature of this optimum
regime, by focusing on the flowrate history for a
cooldown process. The optimum flowrate history is
influenced by the temperature dependence of the
object-coolant heat transfer coefficient and by the
specific heat of the working fluid.

The payoff associated with using the optimum
flowrate, equation (13), wasevaluated as the mass ratio
m,/m_. By means of specific cooldown and heating
examples, we showed that there exist definite para-
metric domains (applications) in which the savings in
working fluid are substantial. In addition to specific
examples, this paper provides the heat transfer engin-
eer with general analytical results which are sufficient

ADRIAN BEjAN and WERNER SCHULTZ

for determining the optimum cooling/heating regime
for any application.
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DEBIT OPTIMAL POUR LES MECANISMES DE REFROIDISSEMENT ET DE STOCKAGE
D'ENERGIE

Résumé-—On considére le probléme fondamental du refroidissement ou de chauffage d’un objet en utilisant
la quantité minimale de fluide de travail. On montre analytiquement que si la durée du refroidissement ou du
chauffage est fixée, il existe alors un régime opératoire unique (fonction débit-temps) qui assure la
consommation minimale de fluide. Le débit optimal est proportionnel a (U/C,)'/* ou U est le coefficient
global de transfert et C, 1a chaleur massique du fiuide ; le débit optimal change avec le temps quand (U/C,,)l 2
varie avec la température du systéme. Des exemples numériques de refroidissement et de stockage d’énergie
montrent que 'implantation de ce régime opératoire optimal peut conduire & des économies sensibles de
fluide de travail.

OPTIMALE DURCHFLUSSCHARAKTERISTIK FUR ABKUHL- UND HEIZVORGANGE

Zusammenfassung—FEin Grundproblem der Warmetechnik stellt sich mit der Frage, wie ein Objekt
abgekiihlt oder erwirmt werden muf, so daB ein Minimum an Arbeitsfluid verbraucht wird. In diesem
Beitrag wird analytisch gezeigt, daB bei einer vorgegebenen Dauer des Kiihl- oder Heizprozesses eine
bestimmte Prozessfilhrung (Durchflu3-Zeit-Charakteristik) existiert, die einen minimalen Arbeitsfluidver-
brauch gewihrleistet. Der optimale Fluiddurchsatz verhélt sich proportional zu (U/C,)'", wobei U den
mittleren Wirmeiibergangskoeffizienten und C,, die spezifische Wirmekapazitit des Arbeitsmittels bezeich-
net. Der optimale DurchfluB ist zeitabhangig, indem sich (U/C,)'? mit der Temperatur bei der
Abkuhlung/Heizung dndert. Zahlenbeispiele fiir Abkuihl- und Heizprozesse legen dar, dafl die Anwendung
dieser Vorschrift fiir die Durchflufisteuerung zu betrachtlichen Einsparungen an Arbeitsmittel fiihren kann.

U3MEPEHHME ONTUMAJILHON CKOPOCTH TEYEHUSA [TPU OXJIAXIEHHUA
U HATPEBAHUH

AnHoTauns — PaccMaTpuBaeTcs BaxHas npobjieMa TEMIOBOro pacyera npouecca OXJaxOeHHs HIH
HarpeBaHHs 06BEKTa MHHUMAJIbHBIM KOIHYECTBOM paboued XHAKOCTH. AHAJHTHYECKH MOKa3aHo, YTO
AN 3aJaHHOM [UTMTEIBHOCTH NpOLECCa OXJIAXK/JICHHSA HJIM HAarpeBaHMs CYLIECTBYET €AWHCTBEHHBIH
pabounit pexuM (PYHKIOHS CKOPOCTb TEHEHMs — BPEMs), IIPH KOTOPOM pacxol paboueil xuakocTu
MHHHMajleH. ONTHMaJbHAs CKOPOCTb TeYeHHs mponopunonansia U/Cp!/?, rae U — cyMMapHbiit ko3¢~
GHIHEHT nepeHoca Tena, a Cp — yJebHag TEIIOEMKOCTb paboyeil HAKOCTH ; ONTHMAJIbHASL CKOPOCTh
TEUCHUS HIMEHSAETCA CO BPEMEHEM II0 MEPE TOro, kak BenmynHa U/Cp!"? uamensercs ¢ M3MeHeHHEM
TEMIIEPATYPbl CHCTEMBI. YucneHnusie NPpUMEPHI MPOLIECCOB 0T60pa H noaBoaa Temnia noxKasblBAKOT, UYTO
HCNOJIL30BAHHE ONTUMANBHOTO PEXHUMA BEICT K 3HAYHTENBHOR YKOHOMUK paGoqeﬁ XKHUIOKOCTH.



