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Abstract-This paper considers the basic thermal design problem of cooling or heating an object using the 
minimum amount of working fluid. It is shown analytically that if the duration of the cooling or heating 
process is fixed, then there exists a .unique operating regime (flowratetime function) which insures the 
minimum consumption of working fluid. The optimum flowrate is proportional to (U/C,)“2, where U is the 
overall heat transfer coefficient and C, is the specific heat of the working fluid; the optimum flowrate changes 
with time as (U/C,)“’ varies with the temperature of the system. Numerical examples of cooldown and 
energy storage processes show that the implementation of this optimum operating regime can lead to 

significant savings in working fluid. 

NOMENCLATURE INTRODUCTION 

A, heat transfer area; 

C, specific heat of object ; 

CO, value of C at T, ; 

C,, specific heat of working fluid ; 
c*, constant of integration ; 
F, integrand ; 
I,, I,, I,, integrals; 

AN INCREASING number of novel installations for 
energy processing and conversion rely on the classical 
process of batch cooling or heating. For example, in 
the field of solar energy engineering, we find that the 
energy drawn from solar collectors can be temporarily 
stored by batch heating water tanks and underground 
porous rock beds [l]. Electric power companies are 
evaluating the possibility of storing thermal energy in 
large tanks of water or oil during slack periods, to ease 
the strain during heavy demand periods [2]. Further- 
more, the emerging technology of large-scale super- 
conducting devices relies heavily on the cooldown 
(batch cooling) of immense structures from room 
temperature (300K) to the normal boiling point of 
helium (4.2 K); a noteworthy example in this group is 
the proposed construction of football stadium size 
superconducting structures for magnetic energy 
storage [33. 

4 

111, 

M, 
NTUo, 

total mass of coolant or hot fluid; 
flowrate ; 
mass of object ; 
number of heat transfer units based on 

u,; 
NTV, 

Pt 
47 

7, 

Subscripts 
min, 
opt, 

number of heat transfer units based on 0 ; 
exponent in specific heat function C(T); 
exponent in heat transfer coefficient 
function U(T) ; 
heat transfer rate; 
time; 
cooldown time ; 
absolute temperature ; 
temperature of working fluid, inside the 
object; 
high end-temperature of process; 
low end-temperature of process; 
initial temperature of working fluid; 
heat transfer coefficient, U( To); 
temperature-averaged heat transfer 
coefficient ; 
absolute temperature ratio, T/T,. 

minimum ; 
optimum; 

0, c, optimum and constant flowrate regimes, 
respectively (used to characterize m 
and ni). 

*Visiting from the University of Stuttgart, F.R.G. 

In all such applications, the expensive commodity is 
the fluid which must be pumped through the object 
(structure) ofinterest. The fluid heated in the boiler of a 
power plant inherits the price of the fuel which is 
burned. Likewise, the fluid heated in a solar collector is 
in limited supply, considering the high initial cost of 
installed solar collector area. And, finally, the cryogen 
(liquid helium) circulated through a superconducting 
structure is notoriously expensive, given the extreme 
ratio of absolute temperatures (300 K/4.2 K) which 
must be overcome by the liquefaction process [4]. 

In this paper we address the fundamental question 
of how to cool (or heat) a system to a desired 
temperature, by using the minimum quantity of pre- 
cious fluid (cooling or heating agent). For clarity, we 
focus in detail on the cooldown process. The energy 
storage process is found to be analytically identical to 
the cooldown process and, for this reason, it is 
discussed only briefly at the end of the paper. 
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a) 

b) 

0 L 

LENGTH 

FIG. 1. Schematic of batch cooling system and temperature 
history during cooldown. 

THE COOLDOWN PROCESS 

The basic features of the model employed in our 
analysis are illustrated in Fig. 1. In the top drawing we 
show the coolant supply, which is at a temperature T,. 
Next to it, we show the object (porous structure or 
pool of liquid) which must be cooled from an initial 
temperature T, down to a Fmal temperature T,. 
Assuming that thecoolant floods the object uniformly, 
we model the object’s temperature as a function of time 
only, T(t). This modeling feature is particularly good 
in the case of porous superconducting structures 
in which, in addition to the multidirectional channels 
available for the dispersion of coolant, the structure 
itself contains a substantial amount of high con- 
ductivity copper [3]. In the case of liquid pools for 
energy storage, the uniform T assumption means that 
the liquid is well-mixed (by free convection or other 
mechanisms). 

In our model, the mass of the system is M and its 
specific heat is C. The total contact area available for 
object-coolant heat transfer is A. The instantaneous 
heat transfer rate is proportional to object-coolant 
temperature difference 

Q = UA(T - To,,) (1) 

where, in general, the overall heat transfer coefficient U 
may be a function of temperature. Inside the object, the 
coolant is modeled as well-mixed, at a temperature 
which varies with time, Tout(t). A schematic of the 
object and coolant temperature history is presented in 
the lower half of Fig. 1. 

The link between the coolant supply T, and the 
object T(t) is provided by the coolant stream of 
flowrate wi and heat capacity C,. The flowrate wi can 
vary with time, such that at the end of the cooldown 
process the overall coolant requirement 

m= 

is minimum. If the coolant flowrate is time- 
independent, n&, and if the heat transfer coefficient is 
independent of temperature, U,, it is easy to show that 

T(t) - To U,A t 
T, _ T, = exp MC 1 + NTU, 1 

(3) 

where NTU, = U,A/(rr&C,). For the cooldown time t, 
associated with the temperature drop T, --* T, we 

obtain 

TH - 7-0 In ____ 
TL - To 

(4) 

hence, the overall coolant requirement is 

m=ye+l) In=. (5) 

Equation (5) shows that the coolant requirement m 

decreases steadily if the flowrate ni, decreases: in the 
limit I& + 0, the coolant mass m reaches the asymp- 
totic minimum value 

(6) 

Although desirable from a coolant-conservation per- 
spective, the process which consumes only mmin is not 
practical because, as indicated in equation (4) it would 
require an infinitely long time. Real cooldown and 
energy storage processes face t, = constant as a 
constraint. This constraint is obvious in the case of 
energy storage units for solar and peak-shaving appli- 
cations, where t, is measured between precise hours of 
the day. 

THE OPTIMUM FLOWRATE SURJECT TO THE 
FIXED-TIME CONSTRAINT 

In the general case where the flowrate ti is a function 
of time and the overall heat transfer coefficient U is a 
function of temperature, we can write 

UA(T - T,,,) = dC,(T,,, - T,). (7) 

Eliminating T,, between equation (7) and the first law 
of thermodynamics applied to the object, 

MCT = - UA(T - T,,,), (8) 

yields an expression for the instantaneous flowrate 

M$T 

M= P 

To-ET-T 

(9) 

The total coolant mass requirement m is obtained by 
integrating equation (9) over the known cooldown 
interval t,. This result may be written as a temperature 
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integral between the corresponding temperature limits 
T, and T,, 

s T, MsdT 

Wl= P 

TK T,-gf-T 
(10) 

The optimum flowrate function &(t) which mini- 
mizes m is found indirectly, by first determining T(E) 
appearing in equation (9). According to the calculus of 
variations [S], integral (10) is minimized if its in- 
tegrand, named F, satisfies the following Euler equa- 
tion for an extremal, 

Note that F(dt/dT, T), where T is the independent 
variable and the optimum function f(T) is to be 
determined. Solving equation (11) we obtain 

p 2!! T, - T 

Opt MC 1 + (C*UA/C,)1'2 
w2 

where the constant of integration C* has the dimen- 
sion s/kg. The value of constant C* is determined by 
inte~ating equation (12) from t = O(T = TH) to r = 
t,(T = TL), where U is a known function of tempera- 
ture. Finally, inserting equation (12) into equation (9) 
we obtain 

$7, = (UA/C,C*)‘? (13) 

This is a compact result of interesting physical 
significance. Bearing in mind that U varies as the 
average temperature (T, T,,) decreases, we learn that 
during relatively poor heat transfer conditions (low U) 
the mass flowrate should be decreased: this decrease is 
necessary in order to avoid the decrease in T,,, and the 
corresponding drop in heat exchanger effectiveness. If 
during the same cooldown process the specific heat of 
coolant increases, then rri must again decrease in order 
to avoid a further drop in heat exchanger effectiveness 
Note also that n&,,(r) is not directly a function of the 
object’s temperature T. However, v&,, depends on T 
through U and C, 

COOLANT REQUIREMENTS FOR OPTIMUM 
VERSUS CONSTANT FLOWRATES 

The savings in coolant mass m associated with 
employing the optimum flowrate history (13) instead 
of a constant rate rit, are calculated as the mass ratio 
mdm,. In the following analysis, subscripts o and c 
refer to the optimum and constant flowrate regimes, 
respectively. 

Combining equations (12) and (10) we obtain 

The other mass requirement, m,, is obtained by 
eliminating F between equations (9) and (I 0) 

The unknown constant C+ appearing in equation (14) 
is determined from the condition of equal cooldown 
times 

(16) 

where the LHS corresponds to the optimum flowrate 
regime and the RHS to the constant flowrate regime. 
Substituting equations (12) and (15) for F_,, and M, in 
equation (16) leads to the integral condition 

s 7L (C*/UAC,)“2 E = s TL MCdt (17) 
ItI T,, %C,(l - 5) 

where z is the absolute temperature ratio TIT,. The 
integrals appearing in equation (17) have been eva- 
luated numerically, assuming that the object’s heat 
capacity C and the heat transfer coefficient U vary with 
the absolute temperature as 

C = C,rP 

and 

U = U,?4. 

Finally, equation (17) yields 

(18) 

(19) 

(20) 

with the notation 

I 

‘Ill rP 

c 

T,< @-4J1 
I, = - dt, I, = - dt. 

II z-1 11 z-l 

(21322) 

Based on this result, the coolant requirements (14, 
15) can be expressed as 

MC0 
m =- 

0 

CP 
I,+ 

1; %C, 
U,A 1, 

(23) 

and 

i 
(24) 

where I, is the integral 

fr. &P-9) 

im 

The coolant mass ratio is obtained by dividing equa- 
tion (23) and (24) 

m, NTU, + UZ/‘~,)~ 
- = NTU, + 1,/I, m, 

(26) 
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where N TU, is the number of heat transfer units based 
on nit and U,,, 

(27) 

It is easy to verify that if U is constant (i.e., q = 0), the 
mass ratio equals unity, because integrals I, and I, 
reduce to I,. In general, however, the exponents p and q 
are finite and mJm, must be evaluated numerically. 
The results of this effort are presented in the next 
section. 

RESULTS AND DISCUSSION 

As an application of the optimum cooldown regime 
prescribed by equation (13), we considered the cooling 
‘of a large-scale superconducting structure. This pro- 
cess is characterized by the following parameters: T, 
= 4.2 K, the boiling point of helium; T, = 4.5 K ; T, 

= 80 K, provided by liquid nitrogen precooling ; p = 
2.85, derived from heat capacity data of Al, Fe and Cu 
below 80K, as a good approximation [6]. The re- 
lationship between U and T depends on the heat 
transfer mechanism, hence, it varies from one appli- 
cation to another. For this reason, we produced 
general information by varying exponent q from 0.1 
to 10. 

Figure 2 shows the coolant mass ratio for three 
discrete values of NTU,. As q increases, the mass ratio 
m,,,lm, goes through a minimum located in the vicinity 
of q = 1. At first, the right side (rising) part of the curve 
appears inexplicable: increasing q means a stronger 
temperature dependence of U, hence, the savings 
associated with using n&,, should be enhanced. The 
reason for the rising part of the curve is that it is drawn 
for NTU, = constant, where NTU, is based on CJ, = 
U( T,). Therefore, as q increases and as U, is held fixed, 
the effective (average) U available for object-coolant 
heat transfer during cooldown increases significantly. 
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FIG. 2. Coolant mass ratio m&n, vs heat transfer coefficient FIG. 4. Coolant mass ratio m,,/m, vs heat transfer coefficient 

exponent q, for different values of NTU,. exponent q. showing the effect of specific heat exponent p. 
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FIG. 3. Coolant mass ratio m&n, vs heat transfer coefficient 
:xponent q. for different values of the mean number of heat 

transfer units NTU. 

In order to evaluate the (m,Jm,) - q dependence for 
a cooldown process where the effective thermal contact 
is fixed, we defined the mean heat transfer coefficient 

1 
u=- 

s 
” U(7)dr (28) 

7H - 7L TV 

and held NTU = ~A/(ni,C,) constant as we varied q. 

The results are shown in Fig. 3. The mass ratio mJm, 
drops off dramatically above a certain, critical, value of 
exponent q. From an engineering standpoint, we see 
stronger incentives for using the optimum flowrate 
history (13) in cases in which q is large and/or the 

average NTU is small. Thisconclusion is in agreement 
with the qualitative discussion which followed equa- 
tidn (13). 

The effect of heat capacity exponent p on the mass 
ratio is illustrated in Fig. 4. This graph corresponds to 

one value of NTU, and shows the same dramatic drop 
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O? 
0.1 1.0 10.0 

q 

FIG. 5. Coolant mass ratio m&n, vs heat transfer coefficient 
exponent 4, showing the effect ofend temperatures T,, T,, T, 

(numbers on the figure are in corresponding order). 

in mJm, as q increases. The abruptness of the drop is 
enhanced as exponent p increases. 

The effect of varying ru and T,_ is presented in Fig. 5, 

for the special case p = 0 and NTU = 1. The mass 
ratio drops steadily as exponent q increases. Changes 
in both ru and 7L lead to measurable changes in the 
coolant savings associated with using ti,,rl. For exa- 
mple, the largest savings are recorded as both 7,_ and tu 
increase. In connection with the economic cooldown 
of a large superconducting structure, the optimum 
flowrate is recommended especially when 4.2 K helium 
gas is used throughout the cooldown process (from T, 
= 300K to Tr), without liquid nitrogen precooling. 
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FIG. 7. Hot fluid mass ratio m&n, vs heat transfer coefficient 
exponent q, showing the effect ofend temperatures T,, T,, T, 

(numbers on the figure are in corresponding or&r). 

THE HEATING PROCESS 

The minimization of overall heating fluid con- 
sumption can be pursued in the same manner in which 
we analyzed the cooldown process. Figure 6 shows the 
basic model which applies to the heating process. Hot 
fluid of temperature T, heats the object from the initial 
(low) temperature T, to the hnal (high) temperature 
T,. It can be shown that the equations describing the 
relationship between flowrate history, total hot fluid 
requirement and temperature history are identical to 
the equations developed for the cooldown process. The 
only difference occurs in the temperature limits of 
integration. 

In the interest of brevity, we omit the analysis and 
show only a set of representative results. Figure 7 
reports the changes in the mass ratio mJm, as the heat 

transfer coefficient q increases (NTU and p are held 
constant). The behavior of mJm, is qualitatively the 
same as in Fig. 5 for the cooldown process. Comparing 
Figs. 7 and 5, we learn that for a given q the heating 
fluid mass ratio (Fig. 7) is greater than the cooling mass 
ratio (Fig. 5). This means that the optimum flowrate 
history (13) is less effective as a fluid-saving method 
during heating processes, relative to its application to 
cooldown processes. Numerically, the difference is due 
to the fact that heating processes occur above room 
temperature, therefore, they involve smaller absolute 
temperature ratios (7) than the cryogenic cooldown 
example illustrated in the preceding section. 

t 

------- 
CONCLUDING REMARKS 

I I 
0 L 

In this paper we considered the basic thermal design 

b) 
LENGTH 

question of cooling/heating a thermal mass while using 
the minimum amount of working fluid. We showed 

FIG. 6. Schematic of batch heating system and temperature that when the time interval alloted to the process is 
history during energy storage process. fixed, there exists a unique regime of operation which 

HMT 25:8 - B 



1092 ADRIAN BUAN and WERNER SCHULTZ 

insures the largest savings in working fluid. We for 
discussed quantitatively the nature of this optimum for 

regime, by focusing on the flowrate history for a 
cooldown process. The optimum flowrate history is 
influenced by the temperature dependence of the 
object-coolant heat transfer coefficient and by the 1. 

specific heat of the working fluid. 
The payoff associated with using the optimum :: 

flowrate, equation (13), was evaluated as the mass ratio 
m,Jm,. By means of specific cooldown and heating 
examples, we showed that there exist definite para- 4. 
metric domains (applications) in which the savings in 
working fluid are substantial. In addition to specific 

5, 

examples, this paper provides the heat transfer engin- 6, 
eer with general analytical results which are sufficient 

determining the optimum cooling/heating regime 
any application. 
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DEBIT OPTIMAL POUR LES MECANISMES DE REFROIDISSEMENT ET DE STOCKAGE 
D’ENERGIE 

R.&urn&-On considere le probleme fondamental du refroidissement ou de chauffage dun objet en utilisant 
la quantite minimale de fluide de travail. On montre analytiquement que si la durte du refroidissement ou du 
chat&age est fix& il existe alors un regime operatoire unique (fonction debit-temps) qui assure la 
consommation minimale de fluide. Le. debit optimal est proportionnel a (Lr/C,)“’ ou CI est le coefficient 
global de transfert et C, la chaleur massique du fluide; le debit optimal change avec le temps quand ( C.J/C,)“z 
varie avec la temperature du systeme. Des exemples numeriques de refroidissement et de stockage d’energie 
montrent que l’implantation de ce regime operatoire optimal peut conduire a des economies sensibles de 

fluide de travail. 

OPTIMALE DURCHFLUSSCHARAKTERISTIK FUR ABKUHL- UND HEIZVORGANGE 

Zusammenfassung-Ein Grundproblem der Warmetechnik stellt sich mit der Frage, wie ein Objekt 
abgekiihlt oder erwiirmt werden mu& so daB ein Minimum an Arbeitsfluid verbraucht wird. In diesem 
Beitrag wird analytisch gezeigt, da8 bei einer vorgegebenen Dauer des Kiihl- oder Heizprozesses eine 
bestimmte Prozessfiihrung (DurchfluBZeit-Charakteristik) existiert, die einen minimalen Arbeitsfluidver- 
brauch gewiihrleistet. Der optimale Fluiddurchsatz verhllt sich proportional zu (U/C,)“‘, wobei LT den 
mittleren WIrmeiibergangskoeMienten und C, die spezifische Wlrmekapazitat des Arbeitsmittels bezeich- 
net. Der optimale DurchfluD ist zeitabhangig, indem sich (U/C,)“’ mit der Temperatur bei der 
Abkiihlung/Heizung ahdert. Zahlenbeispiele fiir Abkiihl- und Heizprozesse legen dar, da13 die Anwendung 
dieser Vorschrift fiir die DurchfluBsteuerung zu betrgchtlichen Einsparungen an Arbeitsmittel fiihren kann. 

M3MEPEHME OIITMMAJIbHOfi CKOPOCTM TEYEHMII IIPM OXJIA~~EHMM 
I4 HAl-PEBAHHM 

AHHOT~~SS - PaccMaTpsaaeTcn aaxoias npo6neMa Tennoaoro pacqera npouecca oxnanrneuus rum 
HarpeBaHWlO6I&KTa MHHWManbHbIM KO,iA’ieCTBOM pa6oreii XWKOCTW. AHan&iT&iveCKB IlOKa3aH0, VT0 

,I,nR 3anaHHOii QnHTeJIbHOCTH npO,,eCa OXnaXJ,eHESII HnH HarpeBaHHK CylIleCTByeT enL,HCTBeHHbIfi 

pa6oqnB peme~ (+YHKUHX CKopoCTb Teqewia-epewn), npu KOTOPOM pacxon pa6oveB XKB~OCTH 

MUHHMafleH.OIlTHMaJIbHaR CKOpOCTb Te'(eHUII npOI,OpUAOHanbHa ,/c,,"', me Li-CYMMapHbIfi K03+ 

&iIVieHTlIe~HOCaTeII~a,~Cp-~~enbHaSlTeIInOeMKOCTb pa6oqeii XLiAKOCT&i;OtlTliManbHaSlCKOpOCTb 

TeqeHWB H3MeHReTCII CO BpeMeHeM ItO Mepe TOrO, KBK BeJIH’iWHa ,/C,“* H3MeHlleTCII C H3MeHeHHeM 

TeMnepaTypbl CHCTeMb,. YHCneHHbIe "p&,Mepbl npOUeCCOB oT6opa W "OnBOlla Ten,,a "OKa3bIBaW)T, 'IT0 

wnonb30BaHWe onTw.fanbHoro pexcuMa BeneT K 3HawTenbHoii ~KOHOMHH pa6oqeii XKW~OCTA. 


